
Using Android to attack ProGuard

(and saving 2e for a ticket)

BeeRumP – 29 mai 2019

Android Open Source Project
Reversing the obfuscation

Conclusion

Who am I?

◮ @laughing_bit

◮ (C|Python|Twitter|Beamer|Mirabelle) Lover.

◮ Author of the SRE tool Chrysalide

◮ Daily job at Risk&Co

BeeRumP ’19 2 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Android application building
ProGuard and its features
Battle plan

Android key points

◮ Application = code (.java) + dependencies (.class)

◮ APK = dx(ProGuard(javac(code) + dependencies))
◮ External repositories: Google, JCenter, ...

◮ lots of repositories: https://mvnrepository.com/repos

Getting started

◮ Starting point: https://github.com/googlesamples
◮ 176 results for repositories matching android written in Java

◮ Let’s pick SimpleMediaPlayer as an example!

BeeRumP ’19 3 / 12

https://mvnrepository.com/repos
https://github.com/googlesamples

Android Open Source Project
Reversing the obfuscation

Conclusion

Android application building
ProGuard and its features
Battle plan

ProGuard

◮ Shrinks, optimizes and obfuscates Java bytecode
◮ Renames classes, fields, and methods (for instance a.a.a())

◮ deterministic name obfuscation
◮ default obfuscation dictionary: [a-z]+

BeeRumP ’19 4 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Android application building
ProGuard and its features
Battle plan

ProGuard

◮ Shrinks, optimizes and obfuscates Java bytecode
◮ Renames classes, fields, and methods (for instance a.a.a())

◮ deterministic name obfuscation
◮ default obfuscation dictionary: [a-z]+

Advanced usage

◮ Repackage all classes to a single root-level package
◮ -repackageclasses

◮ Use custom obfuscation dictionaries (with reserved keywords)
◮ -{,package,class}obfuscationdictionary

◮ Buy DexGuard
◮ runtime self-protection
◮ extra obfuscation: arithmetic and logical expressions + CFG

BeeRumP ’19 4 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Android application building
ProGuard and its features
Battle plan

1. Collect Android package bytecode
◮ easy to script
◮ https://maven.google.com/: 1.2 Gb

BeeRumP ’19 5 / 12

https://maven.google.com/

Android Open Source Project
Reversing the obfuscation

Conclusion

Android application building
ProGuard and its features
Battle plan

1. Collect Android package bytecode
◮ easy to script
◮ https://maven.google.com/: 1.2 Gb

2. Fingerprint Android packages
◮ easy to script

BeeRumP ’19 5 / 12

https://maven.google.com/

Android Open Source Project
Reversing the obfuscation

Conclusion

Android application building
ProGuard and its features
Battle plan

1. Collect Android package bytecode
◮ easy to script
◮ https://maven.google.com/: 1.2 Gb

2. Fingerprint Android packages
◮ easy to script

3. Compare the fingerprints with obscucated code fingerprints
◮ easy to script scriptable
◮ if there is a match, obfuscation is reversed!

BeeRumP ’19 5 / 12

https://maven.google.com/

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Google Maven

master-index.xml

group-
index.xml

group-
index.xml

Artifact C

Artifact B

Version 3

POM
+ AAR

Version 2
POM

+ AAR

Version 1

POM
+ JARArtifact A

group-
index.xml

BeeRumP ’19 6 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Google Maven

master-index.xml

group-
index.xml

group-
index.xml

Artifact C

Artifact B

Version 3

POM
+ AAR

Version 2
POM

+ AAR

Version 1

POM
+ JARArtifact A

group-
index.xml

https://developer.android.com/studio/build/dependencies#gmaven-access

BeeRumP ’19 6 / 12

https://developer.android.com/studio/build/dependencies#gmaven-access

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

◮ Cyclomatic complexity
◮ #edges - #nodes + 2 * #exits

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

◮ Cyclomatic complexity
◮ #edges - #nodes + 2 * #exits

◮ Xrefs
◮ count of: jumps, branchs, calls, links to strings

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

◮ Cyclomatic complexity
◮ #edges - #nodes + 2 * #exits

◮ Xrefs
◮ count of: jumps, branchs, calls, links to strings

◮ Machoc hash
◮ Murmurhash3(<BB index>:[c,][<dest index>, ...];)

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

◮ Cyclomatic complexity
◮ #edges - #nodes + 2 * #exits

◮ Xrefs
◮ count of: jumps, branchs, calls, links to strings

◮ Machoc hash
◮ Murmurhash3(<BB index>:[c,][<dest index>, ...];)

◮ Dex code_item fields
◮ registers_size ins_size outs_size tries_size insns_size

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

◮ Cyclomatic complexity
◮ #edges - #nodes + 2 * #exits

◮ Xrefs
◮ count of: jumps, branchs, calls, links to strings

◮ Machoc hash
◮ Murmurhash3(<BB index>:[c,][<dest index>, ...];)

◮ Dex code_item fields
◮ registers_size ins_size outs_size tries_size insns_size

◮ Filtered prototypes
◮ (Ljava/lang/String;)[Landroid/support/a/a/h$b;

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity

Used heuristics

◮ Small Primes Product
◮ each instruction type is linked to a prime number

◮ Cyclomatic complexity
◮ #edges - #nodes + 2 * #exits

◮ Xrefs
◮ count of: jumps, branchs, calls, links to strings

◮ Machoc hash
◮ Murmurhash3(<BB index>:[c,][<dest index>, ...];)

◮ Dex code_item fields
◮ registers_size ins_size outs_size tries_size insns_size

◮ Filtered prototypes
◮ (Ljava/lang/String;)[Landroid/support/a/a/h$b;

◮ Filtered class descriptors
◮ Landroid/support/v7/view/menu/e$2$1;

BeeRumP ’19 7 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

1. Build a tree with all obfuscated symbol labels
◮ nodes are parts of the labels: (package|class|routine) names
◮ leafs contain AOSP candidates

BeeRumP ’19 8 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

1. Build a tree with all obfuscated symbol labels
◮ nodes are parts of the labels: (package|class|routine) names
◮ leafs contain AOSP candidates

2. Quickly filter some AOSP candidates
◮ android.support.v7.app.b$a.a
◮ android.support.v4.app.NoSaveStateFrameLayout.<init>

BeeRumP ’19 8 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

1. Build a tree with all obfuscated symbol labels
◮ nodes are parts of the labels: (package|class|routine) names
◮ leafs contain AOSP candidates

2. Quickly filter some AOSP candidates
◮ android.support.v7.app.b$a.a
◮ android.support.v4.app.NoSaveStateFrameLayout.<init>

3. Drop AOSP candidates by packages
◮ select the biggest symbol
◮ retrieve its original name by using binary diffing
◮ remove AOSP packages which do not match

BeeRumP ’19 8 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

1. Build a tree with all obfuscated symbol labels
◮ nodes are parts of the labels: (package|class|routine) names
◮ leafs contain AOSP candidates

2. Quickly filter some AOSP candidates
◮ android.support.v7.app.b$a.a
◮ android.support.v4.app.NoSaveStateFrameLayout.<init>

3. Drop AOSP candidates by packages
◮ select the biggest symbol
◮ retrieve its original name by using binary diffing
◮ remove AOSP packages which do not match

4. Deobfuscate all remaining ProGuard’ed symbols
◮ keep the best match with binary diffing

BeeRumP ’19 8 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

What we got so far
Demo screen
Next steps and beyond

◮ Current status
◮ Work In Progress...
◮ Limitations: only the external dependencies are processed

◮ still an extra help for disassembly understanding!

◮ Full Python bindings
◮ https://chrysalide.re/api/python/pychrysalide-analysis-diffing

BeeRumP ’19 9 / 12

https://chrysalide.re/api/python/pychrysalide-analysis-diffing

Android Open Source Project
Reversing the obfuscation

Conclusion

What we got so far
Demo screen
Next steps and beyond

BeeRumP ’19 10 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

What we got so far
Demo screen
Next steps and beyond

◮ Test with real world samples
◮ scale does matter!
◮ but Chrysalide does not disassemble large APKs yet... (ENOMEM)

◮ Check for debug information
◮ class names could leak from source files

◮ Improve processing time by relying on POM dependencies

◮ Deobfuscate class members as well

BeeRumP ’19 11 / 12

Android Open Source Project
Reversing the obfuscation

Conclusion

Thank you!

BeeRumP ’19 12 / 12

	Android Open Source Project
	Android application building
	ProGuard and its features
	Battle plan

	Reversing the obfuscation
	Download inspiration
	Compare and conquer
	Match algorithm

	Conclusion
	What we got so far
	Demo screen
	Next steps and beyond

