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Who am I?

◮ @laughing_bit

◮ (C|Python|Twitter|Beamer|Mirabelle) Lover.

◮ Author of the SRE tool Chrysalide

◮ Daily job at Risk&Co
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Android application building
ProGuard and its features
Battle plan

Android key points

◮ Application = code (.java) + dependencies (.class)

◮ APK = dx( ProGuard( javac(code) + dependencies ) )
◮ External repositories: Google, JCenter, ...

◮ lots of repositories: https://mvnrepository.com/repos

Getting started

◮ Starting point: https://github.com/googlesamples
◮ 176 results for repositories matching android written in Java

◮ Let’s pick SimpleMediaPlayer as an example!
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ProGuard

◮ Shrinks, optimizes and obfuscates Java bytecode
◮ Renames classes, fields, and methods (for instance a.a.a())

◮ deterministic name obfuscation
◮ default obfuscation dictionary: [a-z]+

Advanced usage

◮ Repackage all classes to a single root-level package
◮ -repackageclasses

◮ Use custom obfuscation dictionaries (with reserved keywords)
◮ -{,package,class}obfuscationdictionary

◮ Buy DexGuard
◮ runtime self-protection
◮ extra obfuscation: arithmetic and logical expressions + CFG
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◮ easy to script
◮ https://maven.google.com/: 1.2 Gb
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1. Collect Android package bytecode
◮ easy to script
◮ https://maven.google.com/: 1.2 Gb

2. Fingerprint Android packages
◮ easy to script

3. Compare the fingerprints with obscucated code fingerprints
◮ easy to script scriptable
◮ if there is a match, obfuscation is reversed!
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Download inspiration
Compare and conquer
Match algorithm

Google Maven

master-index.xml

group-
index.xml

group-
index.xml

Artifact C

Artifact B

Version 3

POM
+ AAR

Version 2
POM

+ AAR

Version 1

POM
+ JARArtifact A

group-
index.xml
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https://developer.android.com/studio/build/dependencies#gmaven-access

BeeRumP ’19 6 / 12

https://developer.android.com/studio/build/dependencies#gmaven-access


Android Open Source Project
Reversing the obfuscation

Conclusion

Download inspiration
Compare and conquer
Match algorithm

Method

◮ Avoid to have to deal with similarity *and* confidence
◮ Select binary heuristics and hope

∑
similarity = identity
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◮ Xrefs
◮ count of: jumps, branchs, calls, links to strings

◮ Machoc hash
◮ Murmurhash3(<BB index>:[c,][<dest index>, ...];)

◮ Dex code_item fields
◮ registers_size ins_size outs_size tries_size insns_size

◮ Filtered prototypes
◮ (Ljava/lang/String;)[Landroid/support/a/a/h$b;

◮ Filtered class descriptors
◮ Landroid/support/v7/view/menu/e$2$1;
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◮ nodes are parts of the labels: (package|class|routine) names
◮ leafs contain AOSP candidates

2. Quickly filter some AOSP candidates
◮ android.support.v7.app.b$a.a
◮ android.support.v4.app.NoSaveStateFrameLayout.<init>

3. Drop AOSP candidates by packages
◮ select the biggest symbol
◮ retrieve its original name by using binary diffing
◮ remove AOSP packages which do not match

4. Deobfuscate all remaining ProGuard’ed symbols
◮ keep the best match with binary diffing
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What we got so far
Demo screen
Next steps and beyond

◮ Current status
◮ Work In Progress...
◮ Limitations: only the external dependencies are processed

◮ still an extra help for disassembly understanding!

◮ Full Python bindings
◮ https://chrysalide.re/api/python/pychrysalide-analysis-diffing
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What we got so far
Demo screen
Next steps and beyond

◮ Test with real world samples
◮ scale does matter!
◮ but Chrysalide does not disassemble large APKs yet... (ENOMEM)

◮ Check for debug information
◮ class names could leak from source files

◮ Improve processing time by relying on POM dependencies

◮ Deobfuscate class members as well
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Thank you!
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